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Abstract

In beam-like fracture tests the rotation at the crack tip is a significant factor controlling the energy release rate. The
local deformations of a beam ahead of the crack tip where the lower edge constrained by a stiffness is described for an
anisotropic elastic material. This is a useful model for composite delamination tests and gives the crack length correc-
tion factor and root rotation which are used in determining energy release rate. The solution is calibrated using FE
results and found to be accurate to within 2%.

The solution is extended by analogy to plasticity where the yielding of the constrained edge is modelled. The assump-
tion that the deformations are controlled by the same parameters as the elastic solution is confirmed numerically. It is
shown that in most practical cases the bottom edge remains elastic. This constraint is important in calculating the root
rotation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of beam-like geometries in fracture tests is extensive (ISO 15024, 2001; Williams, 1993a, 1995;
Kinloch et al., 1994; ESIS Peel Protocol, 2001) and covers a range from composite beam specimens (ISO
15024, 2001; ESIS Peel Protocol, 2001) to peel tests of adhered layers (Williams, 1993a; Kinloch et al.,
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Nomenclature

a beam length

b width

¢ distance to the elastic—plastic interface
C compliance

d damage factor

E, axial Young’s modulus of beam

E, transverse Young’s modulus of beam
E, adhesive Young’s modulus

G strain-energy release-rate

h beam depth

h, adhesive layer thickness

1 second moment of area

M, applied moment at x =0

M, plastic collapse moment

P applied shear force

Ry radius of curvature of free beam at x =0
R, radius of curvature of bonded beam at x =0
R, radius of curvature at the onset of plasticity
S spring stiffness

0 end displacement of the beam

&y yield strain

10) rotation factor

L shear modulus

v Poisson’s ratio

0o root rotation at the crack tip

oy axial stress

g, transverse stress

oy yield stress

T shear stress

A characteristic length

1994). A good deal of attention has been given to the analysis (ESIS Mode II Protocol, 2001; Kanninen,
1973, 1974; Williams, 1993b) and in particular the section around the debonding point as shown in Fig.
la. The local loading can be represented as a moment M, and a shear force P and for slender composite
beam specimens the moment is Pa, where a is the beam length and a > & as shown in Fig. 1b. Thus the
effect of the shear force, P, is slight and is a reasonable approximation to a constant moment case. For
the peel test, as shown in Fig. lc, the large deformations result in small a values and the shear force can
be important. For the composites, the deformation is elastic with anisotropy and the local deformation
can be analysed by various forms of beam theory (ESIS Mode II Protocol, 2001; Kanninen, 1973,
1974). For the peel test, the strips are usually isotropic but the large deformations often lead to plastic yield-
ing which complicates the computation of energy release rates G (Williams, 1993b; Kinloch et al., 1994).

An earlier paper (Williams and Hadavinia, 2002) sought to give a consistent analysis incorporating all
these effects but the plasticity case was an approximation. This paper gives the general elastic solution in a
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Fig. 1. Bend test geometry: (a) debond region; (b) typical composite laminate test; (c) a peel test.

form which leads naturally to the plastic case and gives a generally consistent set of results for use in G
calculations.

2. The simple beam solution

The simplest solution for this problem is to use beam theory with the assumption that the bonded part of
the beam is supported on a spring of stiffness S per unit width. The distributed load on the beam is thus Sv
and beam theory gives

d* Sv &

— = ———, [ =— per unit width

at - El P
and E is the axial modulus of the beam. For comparisons with other solutions, it is convenient to write this
in terms of the moment M and since

d%v M
dx2  E\J
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we have
a(M"h*) + M =0 (1)

r__ d _ E
where ' = {- and o, = 55,

The general solution has the form M = Ae** and (%)4 =—gor(f) == ( 4;3/4.

Taking the real part of the solution and since M — 0 as x — oo the result is

. (AN E
M =e4(M,sinx/A + M,cosx/A) with (Z) = ﬁ (2)
where M, and M, are constants. The boundary conditions are
M=M, and M =P atx =0
and hence
M|=M0—|—PA and M2=M0
Also at x = 0 the displacement, vy, and rotation, 6y = —v’|—, are given by
2
UOZA—QS(MO—"PA) (3)
The end displacement of the beam of length a is
Pa’
0=4——=+ 0+
End T
and since M, = Pa the compliance, C = /P, is
4 3 A3
C= a3+3a2A+3aA2+A3>: [a+A3+] 4
ER® ( 2 E\W ( ) 2 (4)
and the energy release rate is
P2 dC 6P (a+ 4)
G=" 1" (ait) (5)
2 da Eh
This may be written as
6M; 6P 6M;
G=—"2+—=(2My+PA)=—2+P0O 6
T Mo ) En (6)

This form is of particular importance in the plastically deforming case when M is limited, as in the peel
test, and a significant portion of G arises from the 0, term, which may be written as

w=(5)(x+372) )

where y = A/h = (El/’a’hS)l/4 and R, is the radius of curvature of the free beam at x = 0.
The characteristic length 4 is the critical parameter in the solution and may be found via compliance, C,

4 , A
= — a A - -
C o [(a+ )y + 2]
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and if 2 > A, as in most composite cases, a fit to C'/? vs. (a + 4) suffices to determine 4 (Williams and
Hadavinia, 2002). A good fit to data is sometimes achieved by assuming that S arises from the stiffness
of the bottom half of the beam so that

where E, is the transverse modulus and hence

0~

which, for the isotropic case, gives y = 4/h ~ 0.64. This highlights the limitation of the simple bending solu-
tion since 4 < & and hence shear deformation can be an important factor. The definition of 4 can be much
improved by examining the stress distributions in the bonded section.

3. Shear deformations
A useful solution may be obtained by assuming that the axial stress, o, is linear in y so that

@_¥@—Q )

where y is measured from the bottom of the beam. Using the equilibrium equations, we may deduce the
shear stress

Ot _ Qo _ M (h_

oy Ox 1
and
o Ml B __6M/ . 2 _X
c= -y =S8, (=1 (10)

where 1 =0 at y =0 and A.
The transverse stress is given by

dg, 0t M"

e T (hy =2

oy ox 21 (hy =57)
and assuming that ¢, =0 at y = /& then

o, = —M"(1 =30 +20%) (11)
and the stress at the bottom edge is —M”. The anisotropic, plane stress, stress—strain relations are

Ou ov E

Elazax—voy, El@: (E—Day—vax (12a)

where v is Poisson’s ratio, and
Ou ov E]
E|l—+—)=|— 12b
1(@y+GX) (u)r (128)
The second of Eqgs. (12a) may be integrated and v defined at y = 0 by the stiffness S such that
O-y|y:0 7M7H

vl = S (12¢)
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and hence

_ // C4 EZ 6VM(§ - Cz)
o) (-0 +5) o8] 5=
Egs. (12a) and (12b) may be combined to give

v 12M  6M"
l@xz_ W h

7—v)<c—c> (14)

Differentiating Eq. (13) and equating to Eq. (14), we have
(M"Y — oy (M"H*) + M =0 (15)

where

9C1C1|:&2V:|
u
1 (E, E,
%= 12( )[Cz hS}
2 s O
ey an (-04d)

C; and G, are defined as suitable averages to give the effective shear and transverse stiffness of the beam.
Cowper (1966) has explored such averages and his solution suggests that C; = 1/10, which will be used here.
The simple solution, Eq. (8), effectively used C, = 1/2 but this is too large as it includes a compensation for
the shear term. The results will be fitted to FE data here and C, = 0.175 is found to be a best fit.

Eq. (15) now replaces Eq. (1) for determining the characteristic length 4 and we have

AN
<Z> _2762<oc]:t\/oc%—4oc2)

For low shear moduli, as in composite laminates, &} > 4a, and (//4) has four real roots and for this case the
solution has the form:

M = Me ™" + Mye /" (16)

with two characteristic lengths A, and 4,. If we apply the same boundary conditions as in the simple bend-
ing case but using Eq. (13) to define vy and 0, i.e.

E]U = —lzh(dzM” + VC]M)

we have
4 _ 2 3/ *]
C=— @+ 384 + 4) +3a(d + 4)* + ([ —2 ) (4 + 4s) 17
Eh[ a (4 ) +3a(4, + 4>) <d1+2\/a—2>(1 2) (17)
and
Ch (M AN (A AN\ R CUE h
=% (T)*E(T) PRI (18)
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Comparison with Eqs. (4) and (7) shows that the effective characteristic length is (4; + 4,) and is given by

%= (%) = \/m (19)

For the isotropic case o < 4o, and (4/4) is complex with two values of 4 and a form similar to Eq. (2). The
results for C, 6y and (422) are the same.

It should be noted that there is an artificial discontinuity in curvature at the bond point in this solution
because shear deformation is not taken into account in the free section of the beam. From Eq. (14) the ra-

dius at x =0 is

h h ah\ Crv + o
—=— 1421 ++=|—= 2
R1 Ro|: + < +a> XZO(1:| (O)

where the first term, /R, arises from bending and the second from the shear stress effects. Eq. (18), like Eq.
(7), express 0y in terms of i/R, and the change in effective 4, i.e. 4, + 45, incorporates the effects of 4/R;.
This point is important when considering plasticity effects which will be discussed later.

4. Comparisons with numerical solutions

Two finite element studies were performed using the FE code ABAQUS. In both a slender beam of 200
mm length and 5 mm depth with a 50 mm supported section was used with eight node isoparametric ele-
ments in plane stress. A rather course mesh with 10 elements across the beam and with a total of 2600 ele-
ments were used. Check comparisons were run with 10,000 elements and no discernible difference was
found and the coarser mesh was used throughout. In the first set of data the lower edge of the supported
section was fixed so that S — oo and a wide range of E|, E, and u was used with v = 0.3. These values (in
GPa) are listed in Table 1 together with «; and o, from

Table 1

Anisotropic solutions, § — oo, y = (44)

E, E, H 23] %) X x FEA
147 7.8 0.7 20.94 0.275 4.69 4.6
147 7.8 1.4 10.44 0.275 3.39 3.34
294 7.8 2.8 10.44 0.55 3.45 3.41
147 780 2.8 5.19 2.75%1073 2.3 2.26
1478 7.8 2.8 5.19 0.275 2.5 2.47
73.5 7.8 2.8 2.56 0.137 1.82 1.8
147 7.8 5.6 2.56 0.275 1.9 1.88
147 7.8 11.2 1.25 0.275 1.56 1.51
147° 147 56.5 0.2 14.6x 1073 0.66 0.66
147 7.8 22.4 0.596 0.275 1.28 1.28
147 7.8 29.1 0.445 0.275 1.22 1.21
294 7.8 29.1 0.95 0.55 1.56 1.55
588 7.8 29.1 1.96 1.1 2 2.01
147 0.78 2.8 5.19 2.75 291 291
147 0.1 2.8 5.19 21.44 3.79 3.85

o = %(% —0.6),0 = 0.0146(%).
@ Typical uniaxial laminate.
® Jsotropic case.
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. 1 E1 . 1 El EZ
oL E0), e () (s )

and y = /o + 2,/a. 4 was computed from compliance found from the FE results
] 4

—=C=——(a+4)’
P gt
and the solution for the case where the plane at x = 0 was fixed;
4
Co=—=a’
Eih
Le.
4 al/c\"”?
”/ = — = — _— — 1
Ch h|\Co

A was generally of the order of 10 mm and a was 200 mm, so the error in the third power of 4 in using this
approximation is small. The two values of y are compared in Table 1 and the differences are generally less
than 2%.

A similar exercise is shown in Table 2 in which the isotropic case is used and S arises from an adhesive
layer of thickness %, and modulus E,. Thus

and

1 a E
o :02, OC2:E<0175+%E—)

In Table 2, i,/h = 0.1 and E,/E was used in the range 1074 to 1 together with the value for E, — oo. The
agreement is very good for the lower ratios (i.e. 3% for E,/E <0.1). The discrepancies at higher ratios arise
mostly from the effect of the adhesive layer on thickness. When E,/E = 1, for example, 4 = 11 mm and the
FE result should scaled to give 0.62 x 11/10 = 0.68, i.e. only 4% different from the analytical solution.
Overall the agreement between the FE and the analysis is good and gives confidence in the use of the
analysis. The determination of 4 is part of current ISO standards for composites (ISO 15024, 2001) and
comparison of the measured value with that from the elastic analysis can be useful. It has been suggested

Table 2

Adhesive layer stiffness results, S = E,/h,, h,/h = 0.1, isotropic, a; = 0.2

E,JE 7 x FEA
10°* 43 4.25
1073 2.45 2.39
1072 1.43 1.39
0.05 1.03 1
0.1 0.91 0.88
0.25 0.8 0.76
0.5 0.74 0.69
0.75 0.72 0.65
1 0.71 0.62

00 0.66 0.66
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for example, (Brunner et al., 2002), that a damage factor, d, can be computed from the measured y value by
assuming that both E, and u decreases by (1 — d) from microcracking. Thus

1 E E
2 1 1
y = T = e -~ 2 0.24 — 71 -
=10 (,u(l —d) V> E>(1 —d)

from which d can be found.

5. Plastic deformations

At high loadings, plastic deformation may be induced in the free part of the beam which leads to energy
dissipation and thus complications in computing G. This is particularly so in the peel test (Kinloch et al.,
1994; Williams, 1993a). The total energy release rate available for both essential fracture work and the
accompanying necessary plastic dissipation is given by

1 6M,

G=My|———= |+ PO 21
’ (Ro ERW® ) 0 @y
The necessary plastic dissipation can be calculated (Kinloch et al., 1994) but is not discussed here. We will

consider first only non-work hardening. It is useful to scale the moments M, by that for plastic collapse,
M, and the radius of curvature Ry, by that for the onset of plasticity R,. Thus

M s
m =g M=

R P 5 (22)
k==L, R,=-—
0 R() ’ P 28y

Introducing rotation factor ¢, Eq. (18) becomes

0() = 28yk0¢ = 38Yl’)’lo¢

> (1 h h
o7+ (L+LENE o664 035"
2 10 a a

for the isotropic elastic case (v = 0.3) when S — oo and ko < 1. For an unconstrained beam for ky < | the
elastic solution is mg = 2/3k, and for ky > 1, for the symmetrical yielding case,

1

-2 (23)
3k;

m():l

A useful lower bound may be obtained by assuming that the constraint of the base is sufficient to prevent
plasticity entirely so that the elastic solution prevails but the radius of curvature comes via Eq. (23), i.e.

0 3 1
i = |3 (24)
28Yk0(}’) 2k0 3k0
The upper bound is given by the assumption that there is no constraint and the plasticity continues into
the bonded region. In this case the curvature is the same in both sections and hence

)

Qevko (23)
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i.e. the correction factor is the same as the elastic case. Intermediate solutions are governed by the con-
straint on the bottom edge which can prevent yielding and give rise to the g, stress distribution as shown
in Fig. 2. For zero axial load, we have

c 2
h 14«
where o = o;/0oy and c is the distance to the elastic-plastic interface. The curvature ratio in this case is given
by
N 1+’
kh=[-) = 26
=0 -(%) 9
and
4 1
my=2-—-=1-—
’ 312 32
1e.
2
4l
ki = — (27)
3ky+ 1

This curvature change is in ko which is used to determine 6, in Eq. (18). A more exact curvature contains
shear effects as mentioned earlier.

It is useful at this stage to return to the expression for a,, Eq. (9), which was the basis of the y analysis.
This may be written as

o, = oyk(1 —2()

where k = % and the characteristic equation (15) is

OCz(k”Nh4) - ocl(k”hz) + k=0

and any solutions with the same form for ¢, will give the same 0 solutions. Thus k = k; at x = 0 and for the
elastic and symmetrical plastic cases k; = k.
For the bottom edge constraint case, we have

4o
c=oyk|——— =2
0, oy [(1—}—0{)2 €‘|

%)
| 7

Fig. 2. Axial stress distribution with bottom edge constraint.
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and for a full analogy we require that 4o/(1 + «)> = 1. This term is

4o (3k% + 1)(Skj — 1)

(1407 16k7
and varies slowly from 1 at ko =1 to 15/16 at ky — oo. Thus we may use k; in place of ky in the elastic
solution to give an approximate solution and

0o ki 16k

2evkod ko (3K2+ 1) (28)
The limit on this constraint condition is provided by the plane strain Tresca criterion,

o1 >0y +06
where

ovk

i oery
From Egs. (26) and (27), we have

. Ski — 1

kg + 1

and for yielding,

PP, )

3(ki — 1)(3k2 + 1)

which, for the isotropic case for a; = 0.2, gives y > 1.04 for ky — oc.
For higher values of y, i.e. when S is low, then constrained yielding occurs on the bottom edge as shown
in Fig. 3. Zero axial load now gives

¢ ¢ 2

h h 14«

1
(c2/h)’ = (e1/h)’

I ARV E AN N
m=\Tre) 302 )BT T

[ h
=00 CZ
i Y,]\ ’47(:1
| %

Fig. 3. Axial stress distribution for bottom edge yielding.

1=

and
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ie.
14 o\ 1 —1/2
k1=ko< 2“) {1+3<Z+1>k§] (30)
The o value is given by the yield criterion,
k k
=l4+——=1 31
o +3(X2—“1) +6\/@ (31)
and

0 (ki
28Yk0¢_ ko

The expression for the axial stress is

4
0. = oyk; [ﬁ - 2§]

as before and « varies between 1 and 5/3 so again 4o/(1 + o)> varies only between 1 and 15/16.
As y — oo, 1.e. for very low S values o — 1 and k; = ky, the upper bound condition. For 12 — oy > 8/9,
Egs. (30) and (31) may be combined to give

1_1[6(X2—0<1)+k1]3_ 3k
kg kil 602 —ou) [6(2% — ou) + ki
and k/kq as a function of ky may be found for any y value. Fig. 4 shows 0y/2¢yky¢ for the various solu-

tions. There are the upper and lower bounds together with the elastic base solution. The y values marked on
the elastic base solution are those at which bottom edge yielding occurs taken from Eq. (29) and it is clear

(32)

12

—> oo, Upper bound
1 N X pp

Fig. 4. Solutions for root rotations.
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that the transition point is close to ky = 1 for y > 1.2. Lines from Eq. (32) are shown for y = 1.5, 2, Sand 10
and there is significant deviation from the elastic base case for y > 1.5, i.e.

E h,

E, h
For typical aluminium bonded samples, for example, /,/h = 0.1 and E = 70 GPa and so for bottom edge
yielding

E, < 0.6 GPa

This is very low for polymer adhesives where typical values are 2-3 GPa so, in practice, the elastic base
solution is likely to be the most appropriate.

Some comparison with FE results are given in Fig. 5. The geometry used was different than in the elastic
case in that a shorter beam was used such that a/h = 6. 6, was obtained directly from the slope of the cen-
tral line at the crack tip and the method was checked in the elastic region to ensure that the predicted rota-
tion factor, ¢, was obtained. In principle it is possible to obtain R, and hence k, by taking the second
derivative of the same line but the discontinuity in curvature due to shear and constraint effects at the crack
tip render this direct method inaccurate. An alternative used was to determine the load and a at each point
and hence the moment and then compute k, from Eq. (23). The code was run in plane strain so both oy and
E are changed, i.e. oy to oy/(1 — v + vz)l/ 2and E to E/(1 —v?). The results are very sensitive to the value of
M, used and it was found that in the numerical data the collapsed moment was about 8% higher than the
theoretical value. The reason is illustrated in Fig. 6 where the axial stress distributions are plotted for
oy = 100 MPa and v = 0.3 was used so the axial stresses should be 112.5 MPa. At a distance of 0.5h from
the crack tip this is so but at the crack tip the stresses in the lower part of the beam are higher. The line

> 12

Beam with adhesive layer

il oy

(PR S )
12

Elastic upper bound

FE results
p 08 - o E,/E=0.01,x=143 — — E,/E=0.01, Eq(32)
o f(w E,/E=0.1,%=0.91

Y

06 L Beam only, x=0.66

04

02

Elastic base, Eq (27)
0 1 1 1 1

0 5 10 15 20

Fig. 5. Comparisons of elastic—plastic solutions with numerical data, ,/h=0.1, a/h = 6 and n = 0.
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150
I 131.6 MPa
s Q0 Oy 112.5 MP
4»-0-A-A—A‘-M-A-"QA-’-D:--0-::------- L
100 _ o o Beam only, Tip
A _ _ .
i . ® E_/E=0.001, h/h=0.1, Tip
. 50 | A A Beam only, 0.5h
g - A A EJE=0.001, h/h=0.1, 0.5h
=3 o
« A
S 0F
A O_X h
o <]y
50T N 0.5n 7
a Tip
L “ o]
100 - 4125 MPa ® o4
150 [ 1 1 1 1 1
0 0.2 04 06 08 1
y/h

Fig. 6. Comparisons of axial stresses, a/h = 6, n=0.

shown is for the 8% increase which requires a stress of 131.6 MPa in the lower region. This is a consequence
of local constraint and has the additional effect of moving the maximum curvature along the beam. The k,
values in Fig. 5 are those using the moment and with M, increased by 8%. The three cases given are for no
adhesive (beam only) for which y = 0.66 (¢ = 0.72) and for the practical range of E,/E = 0.1 and 0.01 with
ho/h = 0.1 giving y = 0.91 (¢ =0.99) and y = 1.43 (¢ = 1.61), respectively. The agreement is remarkably
good and confirms the validity of the various assumption used in this range. Fig. 7 shows data for two
much lower stiffness, i.e. E,/E=0.001 and 0.0001. a/h = 6 was used again but there were problems with

12 -
FE results
1 O E,/E=0.0001, a/h=6 — — Eq(32), E,/E=0.0001, x=4.3
N\ ® E_/E=0.0001, a’h=40
\ A E,/E=0.001, a/h=6 — Eq(32), E,/E=0.001, x=2.43
08 L \\ A E/E=0.001, a/h=40
% 06
28, k¢
04
02
0 1 1 1 1
0 5 10 15 20
k
0

Fig. 7. Comparisons of numerical data for two different free arm length of a/h = 6 and a/h = 40, h,/h =0.1, n=0.
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numerical stability and convergence. A longer beam was also used, a/h = 40, to reduce shear force effects
which extended the stable range somewhat. The agreement is good for lower & values (<10) for 0.001 but
not as good for the higher value of 0.0001. This probably reflects the difficulty of defining k.

6. Work hardening

The solution may be extended to include work hardening by assuming that the strains in the elastic re-
gion extend into the two plastic zones. For the elastic, central, region the stress distribution is as in the non-
work hardening case:

g, = oyk(p —20), %< (< % (33)

where

o OC+1 /’l N 2 OCC2+CI
k( 2)(q—q> and p<w+J< h )

To use the analogy with the elastic solution, we again require that p varies slowly in the plastic region and is
close to unity.
We will use power law work hardening and in the upper plastic region we have

o, = oyk"(p — 20)"

since we assume no constraint on this zone. In this range p — 2{ < 0 which models negative stresses but to
avoid numerical problems for fractional powers it is preferable to use

o= —oxk' (2 —p)', << (34)
in this range. For the lower region, we have
0. = aya K (p — 20", o<c<% (35)

Note that at { = ¢»/h, 6, = —oy and at { = ¢;/h, o, =+ ooy.
The yield criterion at { = ¢;/h is given by

k1 :3(06—1)(}(2—061) (36)
The zero end load condition gives a relationship between p and ki, i.e.
1—n 1
1—n 1+n I+n __ 2
e e I 37)

and ky is found from the moment expression at x = 0 where k = ky;

2 . l1—n B+1N1T 3, p
mO—2+n{(2—P) k1—< 3 ) (T>k—%—z(“ _1)k_1

- (57) ki] (39)

Solutions for k; as a function of ky may be found for a given value of y by choosing an « value (¢; > 1) and
computing k; from Eq. (36). p is found from Eq. (37) and then k, from Eq. (38). Fig. 8 shows the solution
for n =0.2 and oy = 0.2, equivalent to that in Fig. 4 for » =0 and in Fig. 9 p is shown to decrease to about
0.8 at ko = 20.

2
T 24n
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Fig. 8. Solutions for root rotation, n =0.2 and o; = 0.2.
1
0.95 -
09
p
0.85 |-
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0.75 ' ' '
0 5 10 15 20
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Fig. 9. Stress distribution parameter p, n =0.2 and o; = 0.2.
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The elastic base solution is most easily retrieved by taking ¢;/h = 0 which gives
pky =
and p is then an explicit function of «. From Eq. (37),

20 o
it L+ @™ (39)

and again ky, may be found from Eq. (38). The limiting values of y for this case are given by Eq. (36)

Pty gty e (5]

For n =0 we retrieve Eq. (29) and for n =1,

v2 — k()

R Ty
Fig. 10 shows y as a function of ky for o = 0.2 for these two cases which both tend to asymptotes as
ko — o0; 1.e. 1.04 for n =0 and 0.73 for n = 1. Other values of n give intermediate curves with very flat min-
ima as shown for n = 0.2 and 0.5. Thus no degree of work hardening will induce lower edge yielding for the
S — oo case when y =0.66. A further parameter of interest is shown in Fig. 11 where p for the elastic
base case, the minimum, is shown as a function of n for a range of k, values. For n =0 the lower limit
of p is 15/16 =0.94 and for n =1, p=1. Thus in the extreme cases the elastic analogy is reasonably
accurate but the variations in p are up to 25% for n~ 0.4. The highest practical values are about 0.2
and the solutions are likely to be less accurate than the n = 0 case. The solution can be corrected for values

(40)

11 1
1.04 asym.
1 I —
0.89 min.
09
X 0.84 min.
0.8 -
o7 L 0.73 asym. _
0.6 B
0.5 | | | | | | |
0 2 4 6 8 10 12 14 16

0

Fig. 10. Limiting value of y for lower edge yielding, o; = 0.2.
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n

Fig. 11. Stress distribution parameter p as a function of n for the elastic base case.

of p other than unity by re-deriving the characteristic equation to give o and a, for this case. These may be
approximated to

o =2C 4+ (1 —p) and az:M<C2+£>

12 hS
1.2
\ Elastic upper bound
1
FE results
08 L O E,JE=0.01,%=1.43 -— Eq(38), E,/E=0.1
& A EJ/E=0.1,%=0.91 — — Eq(38), E,/E=0.01
% . ® Beamonly, =066  ----- Eq(38) modified for
2, k, ¢ 06 -
04
02
0 1 1 1 J
0 5 10 15 20

Fig. 12. Comparisons of elastic—plastic solutions with numerical data, /,/h=0.1, a/h = 6, n=0.2.
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FE results

o E,/E=0.0001, a/h=40,3=4.3 — Eq(38), E,/E=0.0001
® E,/E=0.0001, a/h=6, x=4.3 — — Eq(38), E,/E=0.001
A E,/E=0.001, a/h=40, x=2.43

A E/E=0.001, a/h=6, x=2.43

0.8

28k? o6 | A8

02

Fig. 13. Comparisons of numerical data for two different free arm length of a/h = 6 and a/h = 40, h,/h =0.1, n=0.2.

for the isotropic case. Thus a corrected value of y, y., may be computed from
1o =(12-p)+ (4 -3 -02) (41)

For n =0 the lowest value of y, 0.66, becomes 0.72, i.e. about 10% change. For n = 0.2 the changes are
about 30% for the higher k, values. Such corrections are worthwhile but do not, of course, give an exact
solution since p is assumed to be constant.

Fig. 12 shows numerical data for the same practical range of values as in Fig. 5 but this time for n = 0.2.
ko is again found via the moment with M, increased by 8%. The agreement with analytical results is good
for ko < 10 but there are discrepancies at higher values, particularly for the beam only case. This is probably
due, again, to the difficulty in defining k. For E,/E = 0.01, y was modified to y. using Eq. (41), as shown,
but the difference is small. Given the approximate nature of the analytical solution the agreement is judged
to be satisfactory. Fig. 13 gives results for the two low adhesive modulus cases and reasonable agreement is
apparent.

7. Conclusions

The modification of the simple beam theory to include transverse and shear stresses give satisfactory re-
sults when compared to FE data over a wide range of anisotropic elastic properties. It is of particular note
that the low shear stiffness, which is common in laminates, is accurately modelled.

The extension of the analysis to elastic—plastic yielding by analogy with the elastic solution is also
successful. This essentially assumes that the deformations are determined by the elastic section and
are unaffected by the plasticity. The loss of symmetry in the axial stress distribution in the bonded
region does not appear to have a significant effect which is why the analogy works. Again comparison
with FE data is good for the non-work hardening and the work hardening though the latter is less accu-
rate. A similar analysis using cohesive zone models and limiting stresses is given in Cotterell et al.
(in press).
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