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Abstract

In beam-like fracture tests the rotation at the crack tip is a significant factor controlling the energy release rate. The
local deformations of a beam ahead of the crack tip where the lower edge constrained by a stiffness is described for an
anisotropic elastic material. This is a useful model for composite delamination tests and gives the crack length correc-
tion factor and root rotation which are used in determining energy release rate. The solution is calibrated using FE
results and found to be accurate to within 2%.
The solution is extended by analogy to plasticity where the yielding of the constrained edge is modelled. The assump-

tion that the deformations are controlled by the same parameters as the elastic solution is confirmed numerically. It is
shown that in most practical cases the bottom edge remains elastic. This constraint is important in calculating the root
rotation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of beam-like geometries in fracture tests is extensive (ISO 15024, 2001; Williams, 1993a, 1995;
Kinloch et al., 1994; ESIS Peel Protocol, 2001) and covers a range from composite beam specimens (ISO
15024, 2001; ESIS Peel Protocol, 2001) to peel tests of adhered layers (Williams, 1993a; Kinloch et al.,
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

�a beam length
b width
c distance to the elastic–plastic interface
C compliance
d damage factor
E1 axial Young�s modulus of beam
E2 transverse Young�s modulus of beam
Ea adhesive Young�s modulus
G strain-energy release-rate
h beam depth
ha adhesive layer thickness
I second moment of area
M0 applied moment at x = 0
Mp plastic collapse moment
P applied shear force
R0 radius of curvature of free beam at x = 0
R1 radius of curvature of bonded beam at x = 0
Rp radius of curvature at the onset of plasticity
S spring stiffness
d end displacement of the beam
eY yield strain
/ rotation factor
l shear modulus
m Poisson�s ratio
h0 root rotation at the crack tip
rx axial stress
ry transverse stress
rY yield stress
s shear stress
D characteristic length
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1994). A good deal of attention has been given to the analysis (ESIS Mode II Protocol, 2001; Kanninen,
1973, 1974; Williams, 1993b) and in particular the section around the debonding point as shown in Fig.
1a. The local loading can be represented as a moment M0 and a shear force P and for slender composite
beam specimens the moment is P�a, where �a is the beam length and �a � h as shown in Fig. 1b. Thus the
effect of the shear force, P, is slight and is a reasonable approximation to a constant moment case. For
the peel test, as shown in Fig. 1c, the large deformations result in small �a values and the shear force can
be important. For the composites, the deformation is elastic with anisotropy and the local deformation
can be analysed by various forms of beam theory (ESIS Mode II Protocol, 2001; Kanninen, 1973,
1974). For the peel test, the strips are usually isotropic but the large deformations often lead to plastic yield-
ing which complicates the computation of energy release rates G (Williams, 1993b; Kinloch et al., 1994).
An earlier paper (Williams and Hadavinia, 2002) sought to give a consistent analysis incorporating all

these effects but the plasticity case was an approximation. This paper gives the general elastic solution in a
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Fig. 1. Bend test geometry: (a) debond region; (b) typical composite laminate test; (c) a peel test.
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form which leads naturally to the plastic case and gives a generally consistent set of results for use in G

calculations.
2. The simple beam solution

The simplest solution for this problem is to use beam theory with the assumption that the bonded part of
the beam is supported on a spring of stiffness S per unit width. The distributed load on the beam is thus Sv

and beam theory gives
d4v
dx4

¼ � Sv
E1I

; I ¼ h3

12
per unit width
and E1 is the axial modulus of the beam. For comparisons with other solutions, it is convenient to write this
in terms of the moment M and since
d2v
dx2

¼ M
E1I
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we have
a2ðM 0000h4Þ þM ¼ 0 ð1Þ

where 0 ¼ d

dx and a2 ¼ E1
12Sh.

The general solution has the form M = Aex/D and h
D

� �4 ¼ � 1
a2
, or h

D

� �
¼ � 1þi

ð4a2Þ1=4
.

Taking the real part of the solution and since M ! 0 as x ! 1 the result is
M ¼ e�x=DðM1 sin x=D þM2 cos x=DÞ with
D
h

� �4
¼ E1
3Sh

ð2Þ
where M1 and M2 are constants. The boundary conditions are
M ¼ M0 and M 0 ¼ P at x ¼ 0
and hence
M1 ¼ M0 þ PD and M2 ¼ M0
Also at x = 0 the displacement, v0, and rotation, h0 = �v 0jx=0, are given by
v0 ¼
2

D2S
ðM0 þ PDÞ ð3Þ

h0 ¼
2

D3S
ð2M0 þ PDÞ
The end displacement of the beam of length �a is
d ¼ 4
P�a3

E1h
3
þ h0�aþ v0
and since M0 ¼ P�a the compliance, C = d/P, is
C ¼ 4

E1h
3

�a3 þ 3�a2D þ 3�aD2 þ 3

2
D3

� �
¼ 4

E1h
3

ð�aþ DÞ3 þ D3

2

� �
ð4Þ
and the energy release rate is
G ¼ P 2

2

dC
d�a

¼ 6P 2ð�aþ DÞ2

E1h
3

ð5Þ
This may be written as
G ¼ 6M2
0

E1h
3
þ 6PD

E1h
3
ð2M0 þ PDÞ ¼ 6M2

0

E1h
3
þ Ph0 ð6Þ
This form is of particular importance in the plastically deforming case when M0 is limited, as in the peel
test, and a significant portion of G arises from the h0 term, which may be written as
h0 ¼
h
R0

� �
v þ 1

2
v2

h
�a

� �
ð7Þ
where v = D/h = (E1/3hS)1/4 and R0 is the radius of curvature of the free beam at x = 0.
The characteristic length D is the critical parameter in the solution and may be found via compliance, C,
C ¼ 4

E1h
3

ð�aþ DÞ3 þ D3

2

� �
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and if �a � D, as in most composite cases, a fit to C1/3 vs. ð�aþ DÞ suffices to determine D (Williams and
Hadavinia, 2002). A good fit to data is sometimes achieved by assuming that S arises from the stiffness
of the bottom half of the beam so that
S ¼ 2E2=h
where E2 is the transverse modulus and hence
D
h

� �4
¼ 1

6

E1
E2

� �
ð8Þ
which, for the isotropic case, gives v = D/h � 0.64. This highlights the limitation of the simple bending solu-
tion since D < h and hence shear deformation can be an important factor. The definition of D can be much
improved by examining the stress distributions in the bonded section.
3. Shear deformations

A useful solution may be obtained by assuming that the axial stress, rx, is linear in y so that
rx ¼
M
I

h
2
� y

� �
ð9Þ
where y is measured from the bottom of the beam. Using the equilibrium equations, we may deduce the
shear stress
os
oy

¼ � orx

ox
¼ �M 0

I
h
2
� y

� �
and
s ¼ �M 0

2I
ðhy � y2Þ ¼ � 6M

0

h
ðf � f2Þ; f ¼ y

h
ð10Þ
where s = 0 at y = 0 and h.
The transverse stress is given by
ory

oy
¼ � os

ox
¼ M 00

2I
ðhy � y2Þ
and assuming that ry = 0 at y = h then
ry ¼ �M 00ð1� 3f2 þ 2f3Þ ð11Þ

and the stress at the bottom edge is �M00. The anisotropic, plane stress, stress–strain relations are
E1
ou
ox

¼ rx � mry ; E1
ov
oy

¼ E1
E2

� �
ry � mrx ð12aÞ
where v is Poisson�s ratio, and
E1
ou
oy

þ ov
ox

� �
¼ E1

l

� �
s ð12bÞ
The second of Eqs. (12a) may be integrated and v defined at y = 0 by the stiffness S such that
vjy¼0 ¼
ry jy¼0
S

¼ �M 00

S
ð12cÞ
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and hence
E1v ¼ �M 00h
E1
E2

� �
f � f3 þ f4

2

� �
þ E2
hS

� �
� 6mMðf � f2Þ

h
ð13Þ
Eqs. (12a) and (12b) may be combined to give
E1
o2v
ox2

¼ 12M

h3
� 6M 00

h
E1
l

� m

� �
ðf � f2Þ ð14Þ
Differentiating Eq. (13) and equating to Eq. (14), we have
a2ðM 0000h4Þ � a1ðM 00h2Þ þM ¼ 0 ð15Þ

where
a1 ¼ C1

E1
l

� 2m

� �

a2 ¼
1

12

E1
E2

� �
C2 þ

E2
hS

� �

C1 ¼
1

2
ðf � f2Þ; C2 ¼ f � f3 þ f4

2

� �
C1 and C2 are defined as suitable averages to give the effective shear and transverse stiffness of the beam.
Cowper (1966) has explored such averages and his solution suggests that C1 = 1/10, which will be used here.
The simple solution, Eq. (8), effectively used C2 = 1/2 but this is too large as it includes a compensation for
the shear term. The results will be fitted to FE data here and C2 = 0.175 is found to be a best fit.
Eq. (15) now replaces Eq. (1) for determining the characteristic length D and we have
h
D

� �2
¼ 1

2a2
a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

q� �
For low shear moduli, as in composite laminates, a21 > 4a2 and (h/D) has four real roots and for this case the
solution has the form:
M ¼ M1e
�x=D1 þM2e

�x=D2 ð16Þ

with two characteristic lengths D1 and D2. If we apply the same boundary conditions as in the simple bend-
ing case but using Eq. (13) to define v0 and h0, i.e.
E1v ¼ �12hða2M 00 þ mC1MÞ

we have
C ¼ 4

E1h
3

�a3 þ 3�a2ðD1 þ D2Þ þ 3�aðD1 þ D2Þ2 þ
3
ffiffiffiffiffi
a2

p

a1 þ 2
ffiffiffiffiffi
a2

p
� �

ðD1 þ D2Þ3
� �

ð17Þ
and
h0 ¼
h
R0

D1 þ D2

h

� �
þ 1

2

D1 þ D2

h

� �2 h
�a
þ C1

2

E1
l

h
�a

" #
ð18Þ
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Comparison with Eqs. (4) and (7) shows that the effective characteristic length is (D1 + D2) and is given by
Table
Anisot

E1

147
147
294
147
147a

73.5
147
147
147b

147

147
294
588
147
147

a1 ¼ 1
10

a Typ
b Iso
v ¼ D1 þ D2

h

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ 2

ffiffiffiffiffi
a2

pq
ð19Þ
For the isotropic case a21 < 4a2 and (h/D) is complex with two values of D and a form similar to Eq. (2). The
results for C, h0 and ðD1þD2

h Þ are the same.
It should be noted that there is an artificial discontinuity in curvature at the bond point in this solution

because shear deformation is not taken into account in the free section of the beam. From Eq. (14) the ra-
dius at x = 0 is
h
R1

¼ h
R0

1þ 2 1þ vh
�a

� �
C1m þ a1
v2 � a1

� �
ð20Þ
where the first term, h/R0, arises from bending and the second from the shear stress effects. Eq. (18), like Eq.
(7), express h0 in terms of h/R0 and the change in effective D, i.e. D1 + D2, incorporates the effects of h/R1.
This point is important when considering plasticity effects which will be discussed later.
4. Comparisons with numerical solutions

Two finite element studies were performed using the FE code ABAQUS. In both a slender beam of 200
mm length and 5 mm depth with a 50 mm supported section was used with eight node isoparametric ele-
ments in plane stress. A rather course mesh with 10 elements across the beam and with a total of 2600 ele-
ments were used. Check comparisons were run with 10,000 elements and no discernible difference was
found and the coarser mesh was used throughout. In the first set of data the lower edge of the supported
section was fixed so that S ! 1 and a wide range of E1, E2 and l was used with v = 0.3. These values (in
GPa) are listed in Table 1 together with a1 and a2 from
1
ropic solutions, S ! 1, v ¼ ðD1þD2

h Þ
E2 l a1 a2 v v FEA

7.8 0.7 20.94 0.275 4.69 4.6
7.8 1.4 10.44 0.275 3.39 3.34
7.8 2.8 10.44 0.55 3.45 3.41
780 2.8 5.19 2.75 · 10�3 2.3 2.26
7.8 2.8 5.19 0.275 2.5 2.47

7.8 2.8 2.56 0.137 1.82 1.8
7.8 5.6 2.56 0.275 1.9 1.88
7.8 11.2 1.25 0.275 1.56 1.51
147 56.5 0.2 14.6 · 10�3 0.66 0.66
7.8 22.4 0.596 0.275 1.28 1.28

7.8 29.1 0.445 0.275 1.22 1.21
7.8 29.1 0.95 0.55 1.56 1.55
7.8 29.1 1.96 1.1 2 2.01
0.78 2.8 5.19 2.75 2.91 2.91
0.1 2.8 5.19 21.44 3.79 3.85

ðE1l � 0:6Þ; a2 ¼ 0:0146ðE1E2Þ.
ical uniaxial laminate.
tropic case.



Table
Adhes

Ea/E

10�4

10�3

10�2

0.05
0.1
0.25
0.5
0.75
1
1
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a1 ¼
1

10

E1
l

� 0:6

� �
; a2 ¼

1

12

E1
E2

� �
0:175þ E2

hS

� �
and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ 2

ffiffiffiffiffi
a2

pp
. D was computed from compliance found from the FE results
d
P
¼ C ¼ 4

E1h
3
ð�aþ DÞ3
and the solution for the case where the plane at x = 0 was fixed;
C0 ¼
4

E1h
3
�a3
i.e.
v ¼ D
h
¼ �a

h
C
C0

� �1=3
� 1

" #
D was generally of the order of 10 mm and �a was 200 mm, so the error in the third power of D in using this
approximation is small. The two values of v are compared in Table 1 and the differences are generally less
than 2%.
A similar exercise is shown in Table 2 in which the isotropic case is used and S arises from an adhesive

layer of thickness ha and modulus Ea. Thus
S ¼ Ea
ha
and
a1 ¼ 0:2; a2 ¼
1

12
0:175þ ha

h
E
Ea

� �
In Table 2, ha/h = 0.1 and Ea/E was used in the range 10�4 to 1 together with the value for Ea ! 1. The
agreement is very good for the lower ratios (i.e. 3% for Ea/E < 0.1). The discrepancies at higher ratios arise
mostly from the effect of the adhesive layer on thickness. When Ea/E = 1, for example, h = 11 mm and the
FE result should scaled to give 0.62 · 11/10 = 0.68, i.e. only 4% different from the analytical solution.
Overall the agreement between the FE and the analysis is good and gives confidence in the use of the

analysis. The determination of D is part of current ISO standards for composites (ISO 15024, 2001) and
comparison of the measured value with that from the elastic analysis can be useful. It has been suggested
2
ive layer stiffness results, S = Ea/ha, ha/h = 0.1, isotropic, a1 = 0.2

v v FEA

4.3 4.25
2.45 2.39
1.43 1.39
1.03 1
0.91 0.88
0.8 0.76
0.74 0.69
0.72 0.65
0.71 0.62
0.66 0.66
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for example, (Brunner et al., 2002), that a damage factor, d, can be computed from the measured v value by
assuming that both E2 and l decreases by (1 � d) from microcracking. Thus
v2 ¼ 1

10

E1
lð1� dÞ � 2m

� �
þ 0:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

E2ð1� dÞ

s

from which d can be found.
5. Plastic deformations

At high loadings, plastic deformation may be induced in the free part of the beam which leads to energy
dissipation and thus complications in computing G. This is particularly so in the peel test (Kinloch et al.,
1994; Williams, 1993a). The total energy release rate available for both essential fracture work and the
accompanying necessary plastic dissipation is given by
G ¼ M0

1

R0
� 6M0

Eh3

� �
þ Ph0 ð21Þ
The necessary plastic dissipation can be calculated (Kinloch et al., 1994) but is not discussed here. We will
consider first only non-work hardening. It is useful to scale the moments M0 by that for plastic collapse,
Mp, and the radius of curvature R0, by that for the onset of plasticity Rp. Thus
m0 ¼
M0

Mp

; Mp ¼
rY h

2

4

k0 ¼
Rp
R0

; Rp ¼
h
2eY

ð22Þ
Introducing rotation factor /, Eq. (18) becomes
h0 ¼ 2eYk0/ ¼ 3eYm0/

/ ¼ v þ v2

2
þ ð1þ mÞ

10

� �
h
�a
¼ 0:66þ 0:35

h
�a
for the isotropic elastic case (m = 0.3) when S ! 1 and k0 6 1. For an unconstrained beam for k0 6 1 the
elastic solution is m0 = 2/3k0 and for k0 P 1, for the symmetrical yielding case,
m0 ¼ 1� 1

3k20
ð23Þ
A useful lower bound may be obtained by assuming that the constraint of the base is sufficient to prevent
plasticity entirely so that the elastic solution prevails but the radius of curvature comes via Eq. (23), i.e.
h0
2eYk0/

¼ 3

2k0
1� 1

3k20

 !
ð24Þ
The upper bound is given by the assumption that there is no constraint and the plasticity continues into
the bonded region. In this case the curvature is the same in both sections and hence
h0
2eYk0/

¼ 1 ð25Þ
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i.e. the correction factor is the same as the elastic case. Intermediate solutions are governed by the con-
straint on the bottom edge which can prevent yielding and give rise to the rx stress distribution as shown
in Fig. 2. For zero axial load, we have
c
h
¼ 2

1þ a
where a = r1/rY and c is the distance to the elastic–plastic interface. The curvature ratio in this case is given
by
k1 ¼
h
c

� �2
¼ 1þ a

2

� �2
ð26Þ
and
m0 ¼ 2� 4

3k1=21

¼ 1� 1

3k20
i.e.
k1 ¼
4k20

3k20 þ 1

 !2

ð27Þ
This curvature change is in k0 which is used to determine h0 in Eq. (18). A more exact curvature contains
shear effects as mentioned earlier.
It is useful at this stage to return to the expression for rx, Eq. (9), which was the basis of the v analysis.

This may be written as
rx ¼ rYkð1� 2fÞ
where k ¼ RpM
EI and the characteristic equation (15) is
a2ðk0000h4Þ � a1ðk00h2Þ þ k ¼ 0
and any solutions with the same form for rx will give the same h0 solutions. Thus k = k1 at x = 0 and for the
elastic and symmetrical plastic cases k1 = k0.
For the bottom edge constraint case, we have
rx ¼ rYk
4a

ð1þ aÞ2
� 2f

" #
h
c

y

Yσ−

1σ

Fig. 2. Axial stress distribution with bottom edge constraint.
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and for a full analogy we require that 4a/(1 + a)2 = 1. This term is
4a

ð1þ aÞ2
¼ ð3k20 þ 1Þð5k20 � 1Þ

16k40
and varies slowly from 1 at k0 = 1 to 15/16 at k0 ! 1. Thus we may use k1 in place of k0 in the elastic
solution to give an approximate solution and
h0
2eYk0/

¼ k1
k0

¼ 16k30
ð3k20 þ 1Þ2

ð28Þ
The limit on this constraint condition is provided by the plane strain Tresca criterion,
r1 > rY þ r̂
where
r̂ ¼ �M 00
0 ¼

rYk1
3ðv2 � a1Þ
From Eqs. (26) and (27), we have
a ¼ 5k20 � 1

3k20 þ 1
and for yielding,
v2 � a1 >
8k40

3ðk20 � 1Þð3k20 þ 1Þ
ð29Þ
which, for the isotropic case for a1 = 0.2, gives v > 1.04 for k0 ! 1.
For higher values of v, i.e. when S is low, then constrained yielding occurs on the bottom edge as shown

in Fig. 3. Zero axial load now gives
c1
h
þ c2

h
¼ 2

1þ a

k1 ¼
1

ðc2=hÞ2 � ðc1=hÞ2
and
m0 ¼
2a
1þ a

� �
� 1

3

1þ a
2

� �3
1

k21
¼ 1� 1

3k20
1 Yσ ασ=

h

y

Yσ−

2c

1c

Fig. 3. Axial stress distribution for bottom edge yielding.
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i.e.
k1 ¼ k0
1þ a
2

� �3=2
1þ 3

a � 1

a þ 1

� �
k20

� ��1=2
ð30Þ
The a value is given by the yield criterion,
a ¼ 1þ k1
3ðv2 � a1Þ

¼ 1þ k1
6
ffiffiffiffiffi
a2

p ð31Þ
and
h0
2eYk0/

¼ k1
k0

� �
The expression for the axial stress is
rx ¼ rYk1
4a

ð1þ aÞ2
� 2f

" #
as before and a varies between 1 and 5/3 so again 4a/(1 + a)2 varies only between 1 and 15/16.
As v ! 1, i.e. for very low S values a ! 1 and k1 = k0, the upper bound condition. For v2 � a1 > 8/9,

Eqs. (30) and (31) may be combined to give
1

k20
¼ 1

k21

6ðv2 � a1Þ þ k1
6ðv2 � a1Þ

� �3
� 3k1
½6ðv2 � a1Þ þ k1�

ð32Þ
and k1/k0 as a function of k0 may be found for any v value. Fig. 4 shows h0/2eYk0/ for the various solu-
tions. There are the upper and lower bounds together with the elastic base solution. The v values marked on
the elastic base solution are those at which bottom edge yielding occurs taken from Eq. (29) and it is clear
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Elastic base, Eq (27)
Elastic lower bound, Eq (23)

k
0

χ ∞ , Upper bound

5

2

χ=10

1.5

χ=1.079

χ=1.138

χ=1.016

χ=1.055

0

2
0

k
Y

ε φ
θ

Fig. 4. Solutions for root rotations.
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that the transition point is close to k0 = 1 for v > 1.2. Lines from Eq. (32) are shown for v = 1.5, 2, 5 and 10
and there is significant deviation from the elastic base case for v > 1.5, i.e.
E
Ea

ha
h
> 12
For typical aluminium bonded samples, for example, ha/h = 0.1 and E = 70 GPa and so for bottom edge
yielding
Ea < 0:6 GPa
This is very low for polymer adhesives where typical values are 2–3 GPa so, in practice, the elastic base
solution is likely to be the most appropriate.
Some comparison with FE results are given in Fig. 5. The geometry used was different than in the elastic

case in that a shorter beam was used such that �a=h ¼ 6. h0 was obtained directly from the slope of the cen-
tral line at the crack tip and the method was checked in the elastic region to ensure that the predicted rota-
tion factor, /, was obtained. In principle it is possible to obtain R0 and hence k0 by taking the second
derivative of the same line but the discontinuity in curvature due to shear and constraint effects at the crack
tip render this direct method inaccurate. An alternative used was to determine the load and �a at each point
and hence the moment and then compute k0 from Eq. (23). The code was run in plane strain so both rY and
E are changed, i.e. rY to rY/(1 � m + m2)1/2 and E to E/(1 � m2). The results are very sensitive to the value of
Mp used and it was found that in the numerical data the collapsed moment was about 8% higher than the
theoretical value. The reason is illustrated in Fig. 6 where the axial stress distributions are plotted for
rY = 100 MPa and m = 0.3 was used so the axial stresses should be 112.5 MPa. At a distance of 0.5h from
the crack tip this is so but at the crack tip the stresses in the lower part of the beam are higher. The line
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shown is for the 8% increase which requires a stress of 131.6 MPa in the lower region. This is a consequence
of local constraint and has the additional effect of moving the maximum curvature along the beam. The k0
values in Fig. 5 are those using the moment and with Mp increased by 8%. The three cases given are for no
adhesive (beam only) for which v = 0.66 (/ = 0.72) and for the practical range of Ea/E = 0.1 and 0.01 with
ha/h = 0.1 giving v = 0.91 (/ = 0.99) and v = 1.43 (/ = 1.61), respectively. The agreement is remarkably
good and confirms the validity of the various assumption used in this range. Fig. 7 shows data for two
much lower stiffness, i.e. Ea/E = 0.001 and 0.0001. �a=h ¼ 6 was used again but there were problems with
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numerical stability and convergence. A longer beam was also used, �a=h ¼ 40, to reduce shear force effects
which extended the stable range somewhat. The agreement is good for lower k0 values (<10) for 0.001 but
not as good for the higher value of 0.0001. This probably reflects the difficulty of defining k0.
6. Work hardening

The solution may be extended to include work hardening by assuming that the strains in the elastic re-
gion extend into the two plastic zones. For the elastic, central, region the stress distribution is as in the non-
work hardening case:
rx ¼ rYkðp � 2fÞ; c1
h
< f <

c2
h

ð33Þ
where
k ¼ a þ 1

2

� �
h

c2 � c1

� �
and p ¼ 2

a þ 1

� �
ac2 þ c1

h

� �

To use the analogy with the elastic solution, we again require that p varies slowly in the plastic region and is
close to unity.
We will use power law work hardening and in the upper plastic region we have
rx ¼ rYk
nðp � 2fÞn
since we assume no constraint on this zone. In this range p � 2f < 0 which models negative stresses but to
avoid numerical problems for fractional powers it is preferable to use
rx ¼ �rYk
nð2f � pÞn; c2

h
< f < 1 ð34Þ
in this range. For the lower region, we have
rx ¼ rYa1�nknðp � 2fÞn; 0 < f <
c1
h

ð35Þ
Note that at f = c2/h, rx = �rY and at f = c1/h, rx = + arY.
The yield criterion at f = c1/h is given by
k1 ¼ 3ða � 1Þðv2 � a1Þ ð36Þ

The zero end load condition gives a relationship between p and k1, i.e.
a1�np1þn � ð2� pÞ1þn ¼ 1� n
2

� �
ða2 � 1Þ 1

k1þn
1

ð37Þ
and k0 is found from the moment expression at x = 0 where k = k1;
m0 ¼
2

2þ n
ð2� pÞ1þnkn1 �

1� n
3

� �
a3 þ 1

2

� �
1

k21
� 3

4
ða2 � 1Þ p

k1

" #( )

¼ 2

2þ n
kn0 �

1� n
3

� �
1

k20

" #
ð38Þ
Solutions for k1 as a function of k0 may be found for a given value of v by choosing an a value (a1 > 1) and
computing k1 from Eq. (36). p is found from Eq. (37) and then k0 from Eq. (38). Fig. 8 shows the solution
for n = 0.2 and a1 = 0.2, equivalent to that in Fig. 4 for n = 0 and in Fig. 9 p is shown to decrease to about
0.8 at k0 = 20.
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The elastic base solution is most easily retrieved by taking c1/h = 0 which gives
pk1 ¼ a
and p is then an explicit function of a. From Eq. (37),
p ¼ 2a

a þ 1þ 1þn
2

� �
ða2 � 1Þ

� �1=1þn
¼ a

k1
ð39Þ
and again k0 may be found from Eq. (38). The limiting values of v for this case are given by Eq. (36)
v2 ¼ a1 þ
k1

3ða � 1Þ ¼ a1 þ
1

6ða � 1Þ a þ 1þ 1þ n
2

� �
ða2 � 1Þ

� � 1
1þn

( )
For n = 0 we retrieve Eq. (29) and for n = 1,
v2 ¼ a1 þ
k0

3ðk0 � 1Þ ð40Þ
Fig. 10 shows v as a function of k0 for a1 = 0.2 for these two cases which both tend to asymptotes as
k0! 1; i.e. 1.04 for n = 0 and 0.73 for n = 1. Other values of n give intermediate curves with very flat min-
ima as shown for n = 0.2 and 0.5. Thus no degree of work hardening will induce lower edge yielding for the
S ! 1 case when v = 0.66. A further parameter of interest is shown in Fig. 11 where p for the elastic
base case, the minimum, is shown as a function of n for a range of k0 values. For n = 0 the lower limit
of p is 15/16 = 0.94 and for n = 1, p = 1. Thus in the extreme cases the elastic analogy is reasonably
accurate but the variations in p are up to 25% for n � 0.4. The highest practical values are about 0.2
and the solutions are likely to be less accurate than the n = 0 case. The solution can be corrected for values
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of p other than unity by re-deriving the characteristic equation to give a1 and a2 for this case. These may be
approximated to
a1 ¼ 2C1 þ ð1� pÞ and a2 ¼
ð4� 3pÞ
12

C2 þ
E
hS

� �
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for the isotropic case. Thus a corrected value of v, vc, may be computed from
v2c ¼ ð1:2� pÞ þ ð4� 3pÞ1=2ðv2 � 0:2Þ ð41Þ
For n = 0 the lowest value of v, 0.66, becomes 0.72, i.e. about 10% change. For n = 0.2 the changes are
about 30% for the higher k0 values. Such corrections are worthwhile but do not, of course, give an exact
solution since p is assumed to be constant.
Fig. 12 shows numerical data for the same practical range of values as in Fig. 5 but this time for n = 0.2.

k0 is again found via the moment with Mp increased by 8%. The agreement with analytical results is good
for k0 < 10 but there are discrepancies at higher values, particularly for the beam only case. This is probably
due, again, to the difficulty in defining k0. For Ea/E = 0.01, v was modified to vc using Eq. (41), as shown,
but the difference is small. Given the approximate nature of the analytical solution the agreement is judged
to be satisfactory. Fig. 13 gives results for the two low adhesive modulus cases and reasonable agreement is
apparent.
7. Conclusions

The modification of the simple beam theory to include transverse and shear stresses give satisfactory re-
sults when compared to FE data over a wide range of anisotropic elastic properties. It is of particular note
that the low shear stiffness, which is common in laminates, is accurately modelled.
The extension of the analysis to elastic–plastic yielding by analogy with the elastic solution is also

successful. This essentially assumes that the deformations are determined by the elastic section and
are unaffected by the plasticity. The loss of symmetry in the axial stress distribution in the bonded
region does not appear to have a significant effect which is why the analogy works. Again comparison
with FE data is good for the non-work hardening and the work hardening though the latter is less accu-
rate. A similar analysis using cohesive zone models and limiting stresses is given in Cotterell et al.
(in press).
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